
Shamal AL-Dohuki



Overview

• Data visualization is the presentation of data in a pictorial

or graphical format.



Overview Cont.

• Reasons to use:

• helps people see things that were not obvious to them before;

• patterns can be spotted quickly and easily;

• conveys information in a universal manner;

• answer questions like “What would happen if we made an

adjustment to that area?”.



What is d3.js

A JavaScript library which:

• Draws charts

• Visualizes data

• Doesn’t provide pre-defined charts

• Can be used to develop the real time dashboards

• Can’t be used to draw the 3-D charts



What is d3.js Cont.

• D3 - Data-Driven Documents

•Data: Provided by you

•Driven: d3 connects data to documents

•Documents: web-based documents



Architecture

D3 - Data-Driven Documents



D3.js is good at

• Providing a way to map data to documents.

• Being a general purpose visualization library

• Handling data transformation

• Providing basic math & layout algorithms



D3.js alternatives

• Cytoscape.js

• C3.js

• Canvas.js

• Datacopia

• Panxpan

• See more: alternativeto.net

https://alternativeto.net/software/d3-js/


Before We Start

Before we start, we need the following components:

• D3.js library

• Editor

•Web browser

•Web server



Prerequisites

• HTML

• CSS

• Scalable Vector Graphics (SVG)

• Document Object Model (DOM)

• Some knowledge of JavaScript

• jQuery is a bonus



Scalable Vector Graphics (SVG)

• There are two main ways to represent graphics on the

Web:

• Bitmapped Graphics - storing the RGB values of each pixel

in the image.

• Vector Graphics - storing the coordinates of each vectors

and the colors in which they are rendered.



(SVG) Cont.

•Vector and raster graphics

Vector graphics

Circle(

Center=xy,

Radius=80,

Color=red,

Width=20,

Fill=white)

red

Raster graphics

red
red

white

white

white



(SVG) Cont.

• SVG is a way to render images on the webpage.

• SVG is not a direct image, but is just a way to create images

using text.

• It is a Scalable Vector. It scales itself according to the size of

the browser, so resizing your browser will not distort the

image.



(SVG) Cont.



Document Object Model (DOM)

• The Document Object Model (DOM) is

a cross-platform and language-

independent application programming

interface that treats an HTML, XHTML,

or XML document as a tree structure

wherein each node is an object

representing a part of the document.

Example of DOM hierarchy in an HTML document



DOM Example



Hello HTML



Hello SVG



Hello SVG Cont.
<svg width="400" height="200">

<circle cx="100" cy="100" r="10"></circle>

<circle cx="200" cy="100" r="30" fill="orange"></circle>

<circle cx="300" cy="100" r="20" fill="olivedrab"></circle>

</svg>



How D3 Works



How D3 Works Cont.



Core D3 ideas: Selecting elements

• Selecting elements: d3.select() and d3.selectAll() can be

used to access DOM elements by name, class, id, or many

other css selectors.

• d3.select() selects only the first element that matches the

css selectors while d3.selectAll() selects all matched

elements.



Selecting Elements

• A selection is an array of elements pulled from the current document.

• After selecting elements, you apply operators to them to do stuff.

• These operators can get or set attributes, styles, properties, HTML

and text content.



Selecting Elements: Example
<svg width="400" height="200">

<circle cx="100" cy="100" r="10"></circle>

<circle cx="200" cy="100" r="30" fill="orange"></circle>

<circle cx="300" cy="100" r="20" fill="olivedrab"></circle>

</svg>

<script>

var circles = d3.selectAll("circle");

circles.attr("r", 30);

</script>



Selecting Elements: Example Cont.
<script>

var circles = d3.selectAll("circle");

circles

.attr("r", 30)

.attr("stroke", "black")

.attr("stroke-width", 1.5);

</script>



Select with jQuery

<script>

var circles = $("circle");

circles

.attr("r", 30)

.attr("stroke", "black")

.attr("stroke-width", 1.5);

</script>



Core D3 ideas: Data Binding

• Data Binding: We can use the data() function to bind data

to a selection.

•We can also use data() or datum() to access the data that

belong to a selection.



Data Binding: Example

<script>

var circles = d3.selectAll("circle");

var sizes = [10, 25, 60];

circles

.data(sizes)

.attr("r", function(size)

{ return size / 2; });

</script>



External data files

• d3.csv - request a comma-separated values (CSV) file.

• d3.html - request an HTML document fragment.

• d3.json - request a JSON blob.

• d3.text - request a text file.

• d3.tsv - request a tab-separated values (TSV) file.

• d3.xhr - request a resource using XMLHttpRequest.

• d3.xml - request an XML document fragment.



Example

Titanic Passengers



Example: Dataset



Example: Visualization



Example: Getting Started

• index.html

• We can start by defining a simple

web page, which has a header (h1)

and an svg element that will hold

our visualization. In the style tags,

we can add CSS styling for both

elements defined in the HTML.



Example: Adding Elements

• Manually specifying elements

• We can manually add elements to the DOM, and specify properties such as

the x and y position, and the title (which appears as a tooltip on hover).



Example: Adding Elements Cont.

• Positioning Elements

• Keep in mind that the origin for positioning

elements is the upper left corner.



Example: Selections

• Selecting elements

• d3.select() and d3.selectAll() can be used to access DOM elements by

name, class, id, or many other css selectors. d3.select() selects only the

first element that matches the css selectors while d3.selectAll() selects all

matched elements.



Example: Selections Cont.



Example: Selections Cont.

• Modifying selected elements

• You can use access and modify the properties of

selections with attr(), text(), style(), and other

operators. Most D3 selection methods return the

selection, allowing us to chain the operator calls.



Example: Selections Cont.

• Appending elements

• Through append(), we can add new elements anywhere in the DOM.

• We can then use operators or CSS to set the properties of the element.

• We can also get rid of elements with remove().

• Finally, we can store selections in variables for future use.



Example: Selections Cont.



Example: Data Binding

• Binding

• We can use the data() function to bind data to a selection.

• We can also use data() or datum() to access the data that belong to a

selection.



Example: Data Binding Cont.



Example: Data Binding Cont.

selectAll().data().enter().append()

1. Select all of our circles (currently we don’t have any).

2. Bind our data (in this case, 5 rows worth)

3. Enter each new datum from our selection.

4. Append a new DOM element. There are now 5 new

elements, each with their own unique data.

5. Append titles to the new elements.

6. Merge our new elements into our original selections.

7. Set attributes with operators, using anonymous

functions.



Example: Scales

• Specifying scales

• To position the dots, we can manually specify the x and y position

attributes, but this process can be tedious and error prone for complex

attributes:



Example: Scales Cont.

• Specifying scales

• Scales are functions that map from a domain to a range.

• Anonymous functions can be used to parameterize the element's attributes

using the element's data. Anonymous functions can have two parameters d

(our bound datum) and i (the index of our datum).



Example: Scales Cont.

• Specifying scales

• Given a value from the domain, returns the corresponding value from the

range.



Example: Scales Cont.



Example: Scales Cont.

• More scale types

• d3.scaleLinear create a linear mapping. You can also have d3.scaleLog, d3.scaleSqrt, and

so on.

• You can also specify ordinal (which include nominal data types) and temporal scales.

• Note that the range() does not have to be a set of numbers; it can also be colors or

strings.



Example: Scales Cont.



Example: Axes & Legends

• Creating axes

• Axes can be generated based on the scales in your visualization. Axes are

defined based on their position using d3.axisTop, d3.axisBottom,

d3.axisRight, or d3.axisLeft.

• Note: each of these constructors is a function; to create our axis, we create

or select the element where we want to place it, and then use call() to

apply the function to it.



Example: Axes & Legends Cont.



Example: Axes & Legends Cont.

• Labeling axes

• Labels can be added to your visualization by adding text marks. As with any

other mark, you can programmatically specify both HTML attributes and

CSS styles.



Example: Axes & Legends Cont.

• Legends

• Legends can be constructed just like the

other elements of your visualization: by

creating a new set of marks and using

scales to style the attributes.

• In addition to the rect for the legend

mark, we can append text to create the

legend labels.



Example: Events & Transitions

• Reacting to events

• Event listeners can be added to marks to react to events on the underlying

selection using the on() method. The on() method takes the event name

and a callback function that is triggered every time the specified event

happens.

• An anonymous function can be used as the callback for the event listener.

The input to the function d represents the underlying data of the mark. The

scope, this, corresponds to the DOM element.



Example: Events & Transitions Cont.



Example: Loading Files

• Loading data from external files

• Data can be loaded from many types of external files using commands such

as d3.csv, d3.json, d3.tsv.

• The D3 functions additionally support callback functions for dealing with

the resulting data or error cases.



Example: Loading Files Cont.



Example: Enter/Update/Exit

• Rebinding

• Three things can happen when we call data():

• Update: We want to change the elements we already have.

• Enter: We have new data.

• Exit: We have data that is no longer bound.



Example: Enter/Update/Exit Cont.



Example: Enter/Update/Exit Cont.

1. Update

• Things I want to happen to all of our data, whenever the function is

called. Potentially overwritten by later steps.



Example: Enter/Update/Exit Cont.

2. Enter

• Things I want to happen to 

all new data

• Can use append() to make 

new elements for new data.



Example: Enter/Update/Exit Cont.

3. Enter+Update

• Things I want to set initially. Can use transitions to have attributes 

fade in after creation.



Example: Enter/Update/Exit Cont.

4. Exit

• Things I want to happen to old data

• Can use transitions to make old data fade away

• Can use remove() to keep only elements that are bound to our

current data.



Example: Enter/Update/Exit Cont.

Key binding

• With only one argument, binding will only keep track of the amount of data we 

have.

• If we always have the same amount of data, then nothing will “exit.”

• Can use a argument to specify unique identifiers for data, to define whether data 

should enter or exit.

• Here, our key is the index (row number) of the data in our original csv. Passenger 

name is not unique, and so would not make a good key.



Example: Enter/Update/Exit Cont.


